| Tweet |
Gizem Bozkurt Published in Canadian Geotechnical Journal
Gizem Bozkurt (Georgia) co-authored an article entitled "Capillary Forces between Equally Sized Moving Glass-Beads: An Experimental Study" that was published in the Canadian Geotechnical Journal on April 14, 2017.
The paper is based on Gizem's doctoral studies at the University of Wisconsin-Madison and her co-authors were Dante Fratta, Ph.D., PE and William J. Likos, Ph.D. from the University of Wisconsin-Madison.
Abstract
The mechanical response of near-surface unsaturated soils in large-strain environments such as earthquakes, landslides, or debris flows is highly dependent on capillary forces. While the evolution of capillary forces under static loading has been studied in detail, the dynamic response of unsaturated soils associated with the viscous deformation and the rupture of interparticle liquid menisci at large strains is not as well characterized. Particle-scale pullout tests were conducted to achieve better understanding of how separation rates and distances contribute to capillary force evolution and meniscus rupture between two equally-sized glass spheres. Capillary forces evolve non-monotonically in a manner that first increases and then decreases with increasing separation distances and is dependent on the initial meniscus geometry and wettability of the particles. The rate of capillary force reduction and particle separation distance at liquid bridge rupture are functions of the meniscus volume and the rate of particle separation. The two-particle experimental results suggest that the dynamic response of bulk (multiparticle) unsaturated soil systems would depend on processes of drainage and imbibition and provide insight into the evolution of stiffness and the ductility of unsaturated soils undergoing large-strain deformations.More Information
For more information regarding the paper, visit: Canadian Geotechnical Journal
For more information on capillary forces between equally sized moving glass-beads, contact Gizem Bozkurt at This email address is being protected from spambots. You need JavaScript enabled to view it..
To learn more about Gizem see her profile at: https://www.linkedin.com/in/merve-gizem-bozkurt-ph-d-a9a40452/