In recent years, the changing risks associated with extreme weather events and rising sea levels along coastal environments have resulted in changes in planning and design thinking toward resiliency. Questions surrounding implications of climate change are surfacing. What is considered extreme? What is meant by resiliency? What are the implications to both private and public infrastructure and the duty to keep the public safe and protect investment? In the aftermath of recent head-line grabbing hurricanes, valuable lessons have been learned regarding coastal and climate change, and the impact resiliency planning can have on minimizing risks.

This presentation will discuss the technical challenges of resilient and adaptive design, as well as potential social, economic, and legal implications. As sea levels rise and the intensity and pattern of rainfall events change, there will be increasing risks to manage. For example, these risks will influence insurance rates and municipal bond ratings. Private and public entities may face legal burdens and liability if they chose to do nothing or too little to address the risks of climate change. You will leave this presentation with a greater understanding of potential risks inherent with coastal and climate change and strategies to improve resiliency and adaptation.

Expert Insight Panel
Thursday, April 19th ~ 1:30 - 2:00 PM
The ABA Section of Environmental, Energy, and Resources Law
47th Spring Conference, Orlando, Florida
Paul Tschirky, Ph.D., P.Eng., D.CE
Senior Principal
Geosyntec Consultants – Baton Rouge, Louisiana

Dr. Paul Tschirky leads Geosyntec’s coastal resiliency and adaptive planning and design practice. He has over 20 years of experience in coastal/hydraulic engineering, resiliency, and restoration. Dr. Tschirky has provided planning, design, analysis, modeling, construction documents, and project management for a wide variety of coastal and riverine projects for public and private sector clients. His experience includes numerical and physical modeling of hydraulic processes, as well as field data collection and laboratory investigations. He has applied analytical and statistical techniques, numerical models, and advanced field measurement methods to assess and develop solutions for wide ranging surface water and engineering concerns.

Dr. Tschirky has led multidisciplinary teams developing statewide coastal master plans, preparing guidance for the design of coastal infrastructure, and assessing impacts of coastal structures. Projects have included shoreline protection, marsh creation, ecosystem restoration, wave prediction/ transformation, hydrodynamic modeling, sediment transport, hurricane surges, sea level rise impacts, feasibility assessments, dredging, environmental forces, flood hazard assessment, basin planning projects, navigation and ship maneuvering, and vessel motion/mooring studies.

Dr. Tschirky’s expertise focuses on resilient solutions integrating built infrastructure and natural systems in the complex zone where land and water meet. He has presented at numerous local and international conferences and published papers on topics ranging from coastal wetland restoration to passing ship effects. He is a founding member and current chair of the Louisiana Chapter of the Coasts, Oceans, Ports, and Rivers Institute of the American Society of Civil Engineers.

Dr. Tschirky earned his bachelor’s degree in civil engineering and his doctorate specializing in coastal engineering from Queen’s University in Kingston, Ontario, Canada. He is a board certified Diplomate in Coastal Engineering by the Academy of Coastal, Ocean, Port & Navigation Engineers.